Abstract
We report the influence of short-period superlattice (SPSL)-inserted structures in the underlying undoped GaN on the characteristics of GaN-based light-emitting diodes (LEDs). The measurements of current-voltage (I-V) curves indicate that GaN-based LEDs having pseudomorphic Al<sub>0.3</sub>Ga<sub>0.7</sub>N(2 nm)-GaN(2 nm) SPSL-inserted structures exhibit improvements in device characteristics with the best LED being inserted with two sets of five-pair Al<sub>0.3</sub>Ga<sub>0.7</sub>N(2 nm)-GaN(2 nm) SPSL structure. Based upon the results of etch pit counts, double-crystal X-ray diffraction measurements and transmission electron microscopic observations of the GaN-based LEDs, it was found that the Al<sub>0.3</sub>Ga<sub>0.7</sub>N(2 nm)-GaN(2 nm) SPSL-inserted structures tended to serve as threading dislocation filters in the LEDs so that the improved I-V characteristics were achieved.